Remarkable Effects of P-Perfluorophenyl Group on the Synthesis of Core-Modified Phosphaporphyrinoids and Phosphadithiasapphyrin

Takashi Nakabuchi,† Yoshihiro Matano,*,† and Hiroshi Imahori†,‡,§

*Department of Molecular Engineering, Graduate School of Engineering, Kyoto Uni*V*ersity, Nishikyo-ku, Kyoto 615-8510, Japan, Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto Uni*V*ersity, Nishikyo-ku, Kyoto 615-8510, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan*

matano@scl.kyoto-u.ac.jp

Received January 15, 2010

ORGANIC LETTERS 2010 Vol. 12, No. 5 ¹¹¹²-**¹¹¹⁵**

ABSTRACT

P,X,N₂-type phosphaporphyrins and phosphacalixphyrins (X = N, S) bearing a perfluorophenyl (C_6F_5 **) group at the core phosphorus atom were prepared in high overall yield from 1-perfluorophenyl-2,5-di(ethoxycarbonyl)phosphole as a common starting material. In addition, P**-**C6F5** P,S₂,N₂-type sapphyrin was successfully prepared as the first example of ring-expanded phosphorus-containing porphyrin.

Core modification of porphyrins, namely, replacement of the core pyrrolic nitrogen atom by another heteroatom or carbon, has been known as a powerful tool to alter their optical/electrochemical properties and coordinating ability drastically.¹ Recently, we prepared the first examples of phosphorus-containing core-modified porphyrins $1X^{2-4}$ and calixphyrins $2X^5$ (Figure 1) and disclosed their characteristic optical and electrochemical properties, coordinating

‡ Institute for Integrated Cell-Material Sciences (iCeMS).

Figure 1. P,X,N₂-Porphyrins **1X**, $1X_F$ and P,X,N₂-Porphyrins 2X, $2X_F$ (X = N, S).

behavior, and reactivity. For instance, P,X,N2-porphyrins **1X** were found to possess considerably small HOMO-LUMO gaps as compared with N_{4} - and S , X , N_{2} -porphyrins ($X = N$, S),^{2a,b,d} and the 18 π -systems of **1X** were easily reconstructed by complexation with zerovalent group 10 metals^{2c} and

[†] Department of Molecular Engineering, Graduate School of Engineering.

[§] Fukui Institute for Fundamental Chemistry.

⁽¹⁾ For reviews on core-modified porphyrins, see: (a) Latos-Grazyński, L. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol 2, Chapter 14. (b) Jasat, A.; Dolphin, D. Chem. Rev. **1997**, 97, 2267–2340. (c) Furuta, H.; Maeda, H.; Dolphin, D. *Chem. Re*V*.* **¹⁹⁹⁷**, *⁹⁷*, 2267–2340. (c) Furuta, H.; Maeda, H.; Osuka, A. *Chem. Commun.* **2002**, 1795–1804. (d) Gupta, I.; Ravikanth, M. *Coord. Chem. Re*V*.* **²⁰⁰⁶**, *²⁵⁰*, 468–518. (e) Lash, T. D. *Eur. J. Org. Chem.* **2007**, 5461–5481. (f) Misra, R.; Chandrashekar, T. K. *Acc. Chem. Res.* **2008**, *41*, 265–279. (g) Matano, Y.; Imahori, H. *Acc. Chem. Res.* **2009**, *42*, 1193–1204.

P-oxidation with H_2O_2 ,^{2d} affording unique 20π and/or 22π systems. While these properties and reactivities of phosphaporphyrins are of interest, there were distinct drawbacks for the synthesis due to the high reactivity of a σ^3 -phosphorus atom. First, P-masking/demasking steps are necessary in the synthesis of **1X** and **2X**, which increases the number of reaction steps. Second, P-oxidation inevitably occurs in the ring oxidation of σ^3 -P porphyrinogens to give significant amounts of P-oxo side products, which severely reduces the yield of target porphyrins **1X**. 2d,6 A possible solution to these drawbacks is to improve the durability of the σ^3 -phosphorus center under acidic and oxidizing conditions. In this regard, attachment of an electron-withdrawing group onto the phosphorus atom is a highly promising approach. Here we report the synthesis of P,X,N₂-porphyrins $1X_F$ and P,X,N₂calixphyrins $2X_F$ (X = N, S) bearing a perfluorophenyl (C_6F_5) group at the core phosphorus atom. Notably, the introduction of C_6F_5 group improves the chemical stability of the σ^3 -phosphorus center dramatically, and both $1X_F$ and $2X_F$ are readily available in high overall yield from a common starting material. Moreover, P, S_2, N_2 -sapphyrin, the first example of P-containing expanded porphyrin, was successfully prepared by taking advantage of the electronwithdrawing nature of the C_6F_5 group.

The P-C₆F₅-type P,X,N₂-porphyrins $1X_F$ (X = N, S) were prepared starting from 1-perfluorophenyl-2,5-di- (ethoxycarbonyl)phosphole **3**⁷ by a similar method used for the synthesis of $1X^{2a,b,d}$ (Scheme 1). Reaction of 3 with

diisobutylaluminium hydride (DIBAH) in hexane gave 2,5 di(hydroxymethyl)phosphole **4**, which was then treated with excess pyrrole in the presence of BF_3 • OEt_2 to afford phosphatripyrrane 5 in 45% yield based on 3.⁸ The BF₃promoted dehydrative condensation of **5** with 2,5-bis[hydroxy(phenyl)methyl]pyrrole **6N**⁹ gave *σ*³ -P,N3-porphyrinogen **7** in 35% yield as a mixture of three diastereomers. In sharp contrast to the corresponding P-Ph analogues, diol **⁴** and phosphatripyrrane **5** are sufficiently stable against air and acids. Therefore, it is not necessary to protect the σ^3 phosphorus center throughout the sequential BF_3 -promoted dehydrative condensation reactions from **4** to **7**. Finally, the ring oxidation of the porphyrinogen **7** with 2,3-dichloro-5,6 dicyano-1,4-benzoquinone (DDQ) afforded target porphyrin **1N_F**. In the present synthesis, only trace amounts of P-oxo byproducts were found in the crude reaction mixture, and the yield of $1N_F$ from 7 (50%) was almost three times larger than that of **1N** from the P-Ph-type porphyrinogen (17%).^{2b,d} Alternatively, $\mathbf{1}N_F$ can be prepared in a one-pot procedure from **5** and **6N** in 15% yield (18% yield for stepwise synthesis). According to a similar procedure, P , S , N_2 -porphyrin $\mathbf{1S}_F$ was prepared from 5 and 2,5-dil hydroxy(phenyl)methyl]thiophene **6S**¹⁰ in 8% yield (based on **5**).

The P-C₆F₅-type P,X,N₂-calixphyrins $2X_F$ (X = N, S) were also prepared starting from **3** without P-masking (Scheme 2). Treatment of **3** with excess MeMgBr gave

Scheme 2. Synthesis of C₆F₅-Type P,X,N₂-Calixphyrins $2X_F$

tertiary diol **8** in 29% yield. Dehydrative condensation of **8** with excess pyrrole afforded phosphatripyrrane **9** in 83% yield. The BF3-promoted dehydrative condensation of **9** with **6X** ($X = N$, S) followed by DDQ oxidation afforded P, X , N_2 calixphyrins $2N_F$ and $2S_F$ in 43% and 17% yields, respectively.

Notably, the overall yields of $P-C_6F_5$ -type P, X, N_2 porphyrins $1X_F$ and P, X, N_2 -calixphyrins $2X_F$ from 3 are increased by 1.5-10 times as compared with those of P-Ph analogues **1X** and **2X**. In addition, the number of reaction processes is reduced by $1-2$ steps.

Compounds $1X_F$ and $2X_F$ were isolated as purple and red solids, respectively, and fully characterized by standard spectroscopic techniques. In the ¹⁹F NMR spectra of $1X_F$ and $2X_F$, the *ortho*, *meta*, and *para* ¹⁹F signals of the P-C₆F₅ group were observed at δ_F -165.9 to -163.0, -132.7 to -126.4 , and -156.8 to -154.3 , respectively. The ¹H NMR spectra of **1X**_n and **2X**_n essentially resemble those of P-Ph spectra of $1X_F$ and $2X_F$ essentially resemble those of P-Ph counterparts $1X$ and $2X$. For instance, the pyrrole- β protons of $1N_F$ appeared at the downfield region (δ 8.38-8.69) relative to the corresponding protons of $2N_F$ (δ 5.93–6.60). Figure 2 summarizes differences in chemical shifts (∆*δ*) of the peripheral (heterole- β) protons between $1X_F$ and $2X_F$.

Figure 2. Downfield shifts $(\Delta \delta)$ of the β protons of $\mathbf{1}N_F$ (black) and $1S_F$ (gray) from those of $2N_F$ and $2S_F$.

Significant diatropic ring current effects ($\Delta \delta = 1.82 - 2.75$) stemming from the 18π annulene circuit are clearly observed for $1X_F$. The ring current effects in $1X_F$ also emerged as upfield resonances of ³¹P nucleus ($1N_F$, δ_p -30.7 vs $2N_F$, δ_p -15.9; **1S**_F, δ_p -22.5 vs **2S**_F, δ_p -15.8). It seems that introduction of the electron-withdrawing C_6F_5 group at the core phosphorus atom perturbs the aromaticity of P, X, N_2 porphyrin π -circuits only slightly.

The UV-vis absorption spectrum of P , N_3 -porphyrin $1N_F$ is similar to that of the P-Ph counterpart **1N** (Table 1; Figure

Table 1. UV-Vis Absorption Maxima and Redox Potentials (vs $Fc/Fc^+)^{a,b}$ of 1X, 1X_F, and 11 in CH₂Cl₂

compd	λ_{max} (Soret; Q), nm	$E_{\rm{ox.1}},\,\rm{V}$	$E_{\rm red.1};E_{\rm red.2},\rm\,V$
$1N^c$	431; 486, 522,	$+0.38$ (ir)	$-1.51(r); -1.74(q-r)$
	555, 636, 698		
$1S^c$	440; 492, 518,	$+0.45$ (ir)	-1.36 (r); -1.56 (q-r)
	547, 647, 718		
$1N_{\rm F}$	433; 528, 560,	$+0.53$ (ir)	-1.50 (r); -1.66 (ir)
	640, 704		
$1S_F$	441; 544, 780	$+0.50$ (ir)	-1.30 (ir); -1.46 (ir)
11	500; 599, 740, 835	$+0.43$ (ir)	-1.39 (ir); -1.59 (ir)
^a Reference electrode: Ag/Ag^{+} [0.01 M AgNO ₃ , 0.1 M n-Bu ₄ NPF ₆			

(MeCN)]. ^{*b*} "r", "q-r", and "ir" in parentheses indicate that the processes occur reversibly, quasi-reversibly, and irreversibly. *^c* Data from ref 2d.

S1 in Supporting Information), whereas both Soret and Q bands of P,S,N₂-porphyrin $\mathbf{1S_F}$ were broadened and the Q_{0-0} band was red-shifted by ca. 60 nm as compared to that of **1S** (Table 1 and Figure 3).¹¹ The electrochemical properties of $1X_F$ were examined by cyclic voltammetry (CV) and

Figure 3. UV-vis absorption spectra of **1S** (black; data from ref 2d), $\mathbf{1S_F}$ (purple), and $\mathbf{11}$ (green) in CH₂Cl₂.

differential pulse voltammetry (DPV) (Figure S3 in Supporting Information). The first oxidation potential (*E*ox,1) and the first and second reduction potentials $(E_{\text{red},1}$ and $E_{\text{red},2}$) of $1N_F$ and $1S_F$ determined by DPV are shifted to the negative side compared to the respective potentials of the P-Ph analogues **1X** ($\Delta E_{ox,1}$ = 0.05−0.15 V; $\Delta E_{red,1}$ = 0.01−0.06 V; $\Delta E_{\text{red,2}} = 0.08 - 0.10 \text{ V}$). The replacement of the P-phenyl group with the P-perfluorophenyl group has proven to enhance the electron-accepting ability of the phosphaporphyrin π -systems slightly.

Considering rich coordination chemistry of expanded porphyrins,¹² the synthesis of phosphorus-containing expanded porphyrins is a challenging subject.¹³ However, all attempts to prepare expanded phosphaporphyrins from the ^P-Ph-type phosphatripyrrane have been unsuccessful so far. In this context, the successful result on the synthesis of $1X_F$ was quite encouraging, and we decided to use $P-C_6F_5$ -type phosphatripyrrane **5** as a key precursor for the synthesis of expanded phosphaporphyrins. The first target, $P-C_6F_5$ -type phosphadithiasapphyrin **11**, 14,15 was successfully prepared by the BF₃-promoted $[3 + 2]$ dehydrative condensation between **5** and 5,5′- bis[hydroxy(phenyl)methyl]bithiophene **10**¹⁶ followed by in situ DDQ oxidation (eq 1). It should be emphasized again that P-masking is not involved in the condensation/oxidation steps. The sapphyrin **11** was isolated as an air-stable shiny green solid. The diagnostic spectral

^{(2) (}a) Matano, Y.; Nakabuchi, T.; Miyajima, T.; Imahori, H.; Nakano, H. *Org. Lett.* **2006**, *8*, 5713–5716. (b) Matano, Y.; Nakashima, M.; Nakabuchi, T.; Imahori, H.; Fujishige, S.; Nakano, H. *Org. Lett.* **2008**, *10*, 553–556. (c) Matano, Y.; Nakabuchi, T.; Fujishige, S.; Nakano, H.; Imahori, H. *J. Am. Chem. Soc.* **2008**, *130*, 16446–16447. (d) Nakabuchi, T.; Nakashima, M.; Fujishige, S.; Nakano, H.; Matano, Y.; Imahori, H. *J. Org. Chem.* **2010**, *75*, 375–389.

⁽³⁾ In 2003, Delaere and Nguyen predicted the electronic structures and optical properties of unsubstituted 21-phospha- and 21,23-diphosphaporphyrins based on the results of density functional theory (DFT) calculations: Delaere, D.; Nguyen, M. T. *Chem. Phys. Lett.* **2003**, *376*, 329–337.

⁽⁴⁾ Mathey and co-workers prepared "P-confused" carbaporphyrinoid: Duan, Z.; Clochard, M.; Donnadieu, B.; Mathey, F.; Tham, F. S. *Organometallics* **2007**, *26*, 3617–3620.

^{(5) (}a) Matano, Y.; Miyajima, T.; Nakabuchi, T.; Imahori, H.; Ochi, N.; Sakaki, S. *J. Am. Chem. Soc.* **2006**, *128*, 11760–11761. (b) Matano, Y.; Miyajima, T.; Ochi, N.; Nakabuchi, T.; Shiro, M.; Nakao, Y.; Sakaki, S.; Imahori, H. *J. Am. Chem. Soc.* **2008**, *130*, 990–1002; *Addition/ Correction*: **2009**, *131*, 14123. (c) Matano, Y.; Fujita, M.; Miyajima, T.; Imahori, H. *Organometallics* **2009**, *28*, 6213–6217.

⁽⁶⁾ Ring oxidation of P-masked P,X,N₂-porphyrinogens (X = N, S, O) did not afford $18π$ P,X,N₂-porphyrins. See ref 2b,d.

⁽⁷⁾ Compound 3 was prepared via Ti^{II}-mediated cyclization of 1,7bis(ethoxycarbonyl)hepta-1,6-diyne followed by treatment with $C_6F_5PCl_2$ according to the reported procedure for the synthesis of 1-phenyl-2,5 di(ethoxycarbonyl)phosphole: Matano, Y.; Miyajima, T.; Nakabuchi, T.; Matsutani, Y.; Imahori, H. *J. Org. Chem.* **2006**, *71*, 5792–5795.

⁽⁸⁾ It was convenient to use **4** in a semi-purified state for the subsequent reaction with pyrrole, although **4** is isolable as a colorless solid in 61% yield. For details, see Supporting Information.

features of **11** are as follows. In the 19F and 31P NMR spectra, **11** showed three ¹⁹F signals at δ_F -165.2 (*ortho*), -128.5 (*meta*), and -155.2 (*para*), and one ³¹P signal at δ_P -28.4. In the ¹ H NMR spectrum of **11**, peripheral (*meso*, pyrrole- β , and thiophene- β) protons resonate significantly downfield $(\delta$ 8.49-10.11), which corroborates the 22- π aromaticity of **11** (Figure 4). The relatively downfield appearance (*δ*

Figure 4. ¹H NMR spectrum of 11 in CDCl₃. Asterisks (*) inidicate residual solvents.

2.90-4.58) of the peripherally fused trimethylene protons of 11 originates from the 22- π diatropic ring current effect. It is therefore likely that the phosphole ring in **11** takes on a noninverted conformation as represented schematically in eq 1. This structural feature is in marked contrast to that of previously reported X, S_2, N_2 -sapphyrins $(X = N, O, S, Se)$, where the heterocyclic rings opposite to the bithiophene unit take on an inverted conformation.^{15a,b} Presumably, in P,S₂,N₂sapphyrin **11**, the trimethylene substituents at the phosphole ring disturb its inversion sterically.^{17,18} The UV-vis absorption spectrum of 11 shows an intense Soret band at λ_{max} 500 nm and weak Q bands at $λ_{\text{max}}$ 599–835 nm (Figure 3), both of which are close to the values reported for the inverted X,S2,N2-sapphyrins (Soret: *^λ*max ⁴⁹⁰-510 nm, Q: *^λ*max ⁶⁰⁰-880 nm).15a,b The redox potentials of **¹¹** determined by DPV were more cathodic in comparison with the respective values of $1S_F$ (Table 1; Figures S3c in Supporting Information).

In summary, we have revealed that the $P-C_6F_5$ -type P,X,N₂- porphyrins and P,X,N₂-calixphyrins (X = N, S) can be prepared more easily than their P-Ph analogues. In addition, the first example of phosphorus-containing coremodified sapphyrin was successfully prepared from $P-C_6F_5$ phosphatripyrrane as the key precursor. The present results exemplify that the functionalization at the phosphorus atom is a highly promising strategy to bring chemical stability to the phosphaporphyrin skeleton. Studies on the coordination chemistry of this new series of core-modified porphyrin ligands are now in progress.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research on Innovative Areas (No. 21108511, "*π*-Space") from MEXT, Japan. T.N. thanks a JSPS fellowship for young scientists.

Supporting Information Available: Experimental details and characterization data, ${}^{1}H$ and ${}^{13}C$ NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100114J

⁽⁹⁾ Heo, P.-Y.; Lee, C.-H. *Bull. Korean Chem. Soc.* **1996**, *17*, 515–520.

⁽¹⁰⁾ Ulman, A.; Manassen, J. *J. Am. Chem. Soc.* **1975**, *97*, 6540–6544. (11) The broadening and bathochromic shift of $1S_F$ may be due to electronic repulsion between the core sulfur atom and the $P-C_6F_5$ fluorine

atoms in $1S_F$. (12) For reviews on coordination chemistry of expanded porphyrins, see: (a) Sessler, J. L.; Seidel, D. *Angew. Chem., Int. Ed.* **2003**, *42*, 5134– 5175. (b) Shimizu, S.; Osuka, A. *Eur. J. Inorg. Chem.* **2006**, 1319–1335, See also ref 1b.

⁽¹³⁾ Mathey and co-workers prepared several phosphole-containing macrocycles: (a) Laporte, F.; Mercier, F.; Ricard, L.; Mathey, F. *J. Am. Chem. Soc.* **1994**, *116*, 3306–3311. (b) Deschamps, E.; Ricard, L.; Mathey, F. *J. Chem. Soc., Chem. Commun.* **1995**, 1561.

⁽¹⁴⁾ For a review on sapphyrins, see: Sessler, J. L.; Davis, J. M. *Acc. Chem. Res.* **2001**, *34*, 989–997.

⁽¹⁵⁾ For examples of core-modified sapphyrins, see: (a) Srinivasan, A.; Pushpan, S. K.; Kumar, M. R.; Mahajan, S.; Chandrashekar, T. K.; Roy, R.; Ramamurthy, P. *J. Chem. Soc., Perkin Trans.* **1999**, *2*, 961–968. (b) Shin, K.; Lim, C.; Choi, C.; Kim, Y.; Lee, C.-H. *Chem. Lett.* **1999**, 1331– 1332. (c) Pushpan, S. K.; Srinivasan, A.; Anand, V. G.; Venkatraman, S.; Chandrashekar, T. K.; Joshi, B. S.; Roy, R.; Furuta, H. *J. Am. Chem. Soc.* **2001**, *123*, 5138–5139. (d) Richter, D. T.; Lash, T. D. *J. Org. Chem.* **2004**, *69*, 8842–8850.

⁽¹⁶⁾ Srinivasan, A.; Reddy, V. M.; Narayanan, S. J.; Sridevi, B.; Pushpan, S. K.; Ravikumar, M.; Chandrashekar, T. K. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 2598–2601.

⁽¹⁷⁾ In the variable temperature ¹H NMR spectra of **11** (-100 °C to 0 °C: CD₂Cl₂ or CDCl₂CDCl₂) the signals due to the peripheral (*meso*) +80 °C: CD₂Cl₂ or CDCl₂CDCl₂), the signals due to the peripheral (*meso*, pyrrole- β , thiophene- β , and trimethylene) protons show negligible changes $(\Delta \delta < 0.5$ ppm). This implies that the structure of π -system in 11 is not flexible in solution.

⁽¹⁸⁾ The noninverted conformation of the phosphole ring in **11** may also be due to the absence of adjacent *meso*-substituents: (a) Szterenberg, L.; Latos-Graz˙yn´ski, L. *J. Mol. Struct. (Theochem)* **1999**, *490*, 33–46. See also: (b) Chemielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K. *Chem.*s*Eur. J.* **1995**, *1*, 68–73. (c) Szterenberg, L.; Latos-Graz˙yn´ski, L. *J. Phys. Chem. A* **1999**, *103*, 3302–3309.